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1. Background & Motivation
» What we're trying to do and why

2. Asymptotic distributional results

» Central Limit Theorems for Subsampled Ensembles;
Confidence Intervals for predictions

3. Hypothesis testing
» Tests for feature importance/significance

» Tests for model additivity /interactions

4. Variable Selection & Importance Measures

» Hold-out forests

5. Ebird Application
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BACKGROUND & MOTIVATION




General Supervised Learning Set-up

Notation:
e Response Y
e Features (covariates) X = {X1, ..., X, }
e Prediction point (feature vector) x*
e Prediction §* = F(x*) € R

e We assume we have an i.i.d. training set

T, = {(XL Yl)r Y (Xn/ Yn)}

used to construct the prediction function F, where
Y; = F(X;) +¢€;, €i " ean 0
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Machine Learning Pros & Cons

e Given this generic situation with “a lot" of data, but limited
a priori intuition with respect to underlying relationships in
the data, ML tools present an attractive path forward:

» Little to no model specification often required
» Properly tuned models can produce very accurate

predictions

But ...

» Computing F may be computationally expensive

» Limited ability to do inference; loss of intuition
(“Black-boxes")

» Few if any theoretical gaurantees
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Machine Learning Pros & Cons

e So what gets done in practice?
» Reliance on (scarcely available) ad hoc tools

» “Forced" (improper) application of classic statistical tests
(“We will get a p-value one way or the other")

» Use ML for predictions, simpler (usually linear) statistical
models for inference

And thus, what we’d like is ...

» Computationally efficient set of inferential tools for better
understanding underlying relationships in the data within
traditional “black-box" contexts that come with some
statistical and mathematical backing
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RANDOM FORESTS




Individual Trees

e Trees built by sequentially partitioning the feature space

Feature Space Regression Tree

X, <0401 X, > 0401

@ Vi= -‘,‘?.79

~ . M
1 V=274

S . - . . X,<0706 | X,>0706 X,<0305 | X, 0305

X 274 579 601 295

e Splits chosen greedily to most improve predictions
= High variance
e Tendency to over-fit; define cost-complexity parameter

e Very difficult to analyze.
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Tree-Based Ensembles

e Ensembles of trees usually stabilize variance and improve
predictions

» Bagging (bootstrap aggregating) - take B bootstrap samples
of training set, build a tree with each new sample, and
average over predictions from each tree to get final
prediction

B

.1

YB = E Z Tx*((Xieril)/ (23] (Xi,,,/ Yl'”))
i=1

» Random Forests - similar to bagging, but at each potential
split point in each tree, select the best variable to split based
on a random selection of only d < p features.

B

.1

YRF = E Z Tx*,a)j((Xil ’ Yi] )/ ey (Xi,, ’ Yin ))
i=1
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Random Forests

Why random forests?

e They work! Top ranked method across 100’s of classifiers
(Ferndndez-Delgado et al. 2014) and amongst the best
“off-the-shelf"

e Nice macroscopic structure

Why are they so difficult to analyze?

1. Greediness in fitting makes obtaining distributional results
for individual trees extremely difficult

» Adding deterministic structure gets us back to traditional
statistics

2. Bootstrapping compounds the correlation issues
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DISTRIBUTIONAL RESULTS AND ClIs




Subsampling

Idea: Construct trees with m,, subsamples of size k, instead of
full bootstrap samples and structure ensemble instead of base
learners

My
a

FO) = oo 3 Tel(X, Vi o (X, V)
"=l

e [ooks a lot like a U-statistic, but need to extend results to
(possibly randomized) kernels with growing rank

e Trade-off: Want subsamples to be big enough so that trees
can grow large enough to capture sufficient signal, but
small enough that dependence is manageable

% 9/ 30



CLT

e

for Subbagged Ensembles

Theorem 1

Let Z1, 2>, ... iid Fz and let U, k, m, be an incomplete, infinite order
U-statistic with (Lipschitz) kernel hy,. Let 0, = Ehy, (Z4, ..., Z,)
such that ﬂEhi (Z1,...,Zk,) < C < oo for all n and some constant C,

and let lim ;= = a. Then as long as lim k—’:l =0and lim Cy , # 0,

\/7

_ d
(i) if & = 0, then % 5 ¥ 0,1).

_ d
(i) if 0 < o < oo, then Yrutm—06) 5 (g 1),

[ K
i C1kn *+Chen

- d
\/ﬂ(un,ckn,m” Gkn) N N(O, l)
V Ckn kn

(iii) if @ = oo, then
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Condition 1: Let Z1, Z>, ... iid Fz with Ok, = Ehy (Z4, ..., Zk,) and
define hy x,(z) = Ehy, (2, Z2, ..., Zk,) — Ok,. Then for all 6 > 0,

lim L

n—ee Clrkn *fhl/k” (ZD)Iz0nCy i,

hik” (Z1)dP = 0.

Proposition 1: For a bounded regression function F, if there exists a
constant ¢ such that forall k,, > 1,

|h((X1/ Yl)r cees (ka—l/ Ykm—l)) - h((Xl, Yl)/ cees (an rYk”)r (Xk,,+1/ YI;,+1))|

< o Yi1 =Yg 4

where Y, 11 = F(Xk,+1) + €k, +1, Y;wl =F(Xk,+1) + GZWH’ and where

are i.i.d. with exponential tails, then Condition 1 is

.
€k,+1 and €441

satisfied.
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CLT for Random Forests

Theorem 2

Let Uw;n k,,m, be arandom kernel U-statistic such that U® sat-

isfies Condition 1 and suppose that [Ehi (Z1,...,Zk,) < co for all n,
lim % =0, and lim %Z = a. Then, letting  index the subsamples, so
long as lim Cy , # 0 and

R 2
lim E (BZp,, s Zpi) = By (Zg,, o) Zp,,)) # 0,
U k,,m, is asymptotically normal and the limiting distributions are
the same as those provided in Theorem 1.

e We've got the distributions; once we estimate the parameters, we
can pull out confidence (prediction) intervals. On to more exciting

kinds of inference!
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HYPOTHESIS TESTING




Testing Feature Significance

e Partition collection of features { X1, ..., Xp } into two sets:

X R = Reduced set of features known to be important
X 4 := Additional features to test for importance

in order to test
Hp: F(XR,Xa)=Fr(XR) atN total test points

e Let F denote the original ensemble, and 2 R denote the ensemble that
ignores X 4, so that we have

D(x)) = F(x}) - Fr(x})
1 1
P Z]: LEACT ZJ: Tx: r(S))

LS (T (5) ~ T r(S))
™ i i
j

% e This is a U-statistic, so IA)T)AZ;IA) ~ )(12\] can be used as a test statistic. 13/ 30



Testing for Additivity

® We can also test for various forms of additivity

Total Additi?)ity: Hy : F(X1,X>7) = F1(X4) + F2(X»)
Partial Additivity.' Hy : F(X1, X5, X3) = F1(X1, X3) + F2(X3, X3)

® Define the test set as a grid of test points, viewed as factor levels
in a traditional ANOVA set-up, and derive the test-statistics
accordingly
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FEATURE IMPORTANCE




Feature Importance

® Software to compute random random predictions typically also
includes a procedure to produce variable importance scores

» Another reason for their sustained popularity

® Most commonly, Breiman’s original out-of-bag (OoB)
importance measure is used:
1\ 2
Vix, =~ Z‘ (Fy(X1, o Xp) = F (X7, X2, ..., X))
i=

e Many known problems, especially with overstating importance

of correlated features (Strobl et al. 2007, 2008; Nicodemus et al.
(2010); Biau and Scornet (2015) for overview)
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OoB Importance with Correlation

Importance Rank for Equally Weighted Features Importance Rank for Less Important Features
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Figure: Average OoB importance of X9 and X1 in additive linear model
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OoB Importance with Correlation

e Preference for correlated features particularly problematic
given the backward-elimination-type procedures
commonly employed in practice

» Might instead prefer something akin to t and F-tests in
linear models: correlated features show weaker marginal
importance but significant joint importance

e Proposal: Instead of building, followed by permuting and
predicting, permute (or hold-out) and rebuild to measure
impact on model

» Akin to extending random feature eligibility to entire trees
instead of individual splits
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Hold-out Forests

e Structured Hold-out (SHO): Given ensemble of size m, build
~ & trees excluding (or permuting) each feature and one set

with all features

e Random Hold-out (RHO): For each tree in the ensemble, include
feature X; with probability p;.

® Can define different importance measures:

Viprea(Xi) = & 57, (RE(xr,) - RE(x1)))’
Vinse(Xi) = 7= X7 (SE-ilxr) - SE(ij)>2

ny “~j=1
2
where SE_(x1,) = (RF_i(xT].) - yT].)
» Fits within previous framework and allows for importance
intervals instead of only point estimates
» Also eliminates the “importance stability issue” —

8
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Bike Sharing Dataset Example

Variable Importance Rankings for Bike Rental Data
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Figure: VI rankings by OoB (above) and SHO (below).
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APPLICATIONS




Application: The eBird Project

Citizen science initiative at Cornell’s Laboratory of Ornithology

e Birdwatchers (birders) record observations (time, place,
effort, species seen)

e GPS/Time allows addition of Geographic Information
Systems (GIS) and weather covariates.

e Currently n > 100 million records and p > 1000.

e Goals:

Data-driven maps of bird habitat range/migration

Hypothesis generation about bird ecology

>
>
» Evidence of changing ecological factors/behavior
>

Forecasts of bird migration
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Indigo Bunting Presence/Absence 2010
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Ebird-Related Testing

e Testing the importance of month during the year 2010.
(Time of Year should be important for migratory species)
» Month shows up as highly significant, but random values
of month can also appear (more slightly) significant

» Permuting additional variables appears more robust than
simple deletion (test statistic values cut in half)

e More recently: looking at effects of Tree Swallow early
departure during fall migration along east coast of U.S.

» Anecdotal evidence that Tree Swallows “left early” in
certain years (2008, 2009), though no evidence for why is
immediately obvious
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Tree Swallow Early Departure

Yearly Expected Probability of Tree Swallow Occurence in BCR 30
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Figure: GAM (top) and RF (bottom) predictions of Tree Swallow occurrence
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Tree Swallow Early Departure

Bird Conservation Region 30
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Figure: BCR 30 (left) and specific locations of localized significance tests for
max_temp (right).
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e To test for an effect of year (i.e. were the migration patters
in 2008 & 2009 really substantially different from what we
would typically expect), we develop a permutation-style
test treating the partial effect curves as functional data

» Substantial differences seen when leaving-in/holding-out
max_temp vs day_of_year, though dropping/permuting
max_temp not as big an effect as we might want to see

e To de-correlate max_temp and day_of_year, we test

max_temp_anomaly at the test points from previous slide
and see significance in 5 out of 6 areas
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Food for Thought & Future Work

e Testing procedures work well, but can be sensitive to
subsample size & accuracy of the estimated covariance
parameters

» Still requires constructing many, many trees

» DPotential alternative methods for estimating those
parameters (close relationship to ideas in post-selection
inference)

e Currently investigating alternative testing procedures that
avoid additional tree construction

e Still appears to be a big gap between theory and practice
(e.g. distributions look approximately normal for large
subsample sizes; Variance conditions sufficient, but almost

% certainly not necessary) 27/ 30
7



SuRFIn R Package

Surfin

,'E Download .tar.gz Q View on GitHub

Description

This R package computes uncertainty for random forest predictions using a fast
mplementation of random forests in C++. Two variance estimates are provided: U-statistic
based (Mentch & Hooker, 2016) and infinitesimal jackknife (Wager, Hastie, Efron, 2014),
the latter as a wrapper to the authors’ R code randomForestCl.

Check out a demo: How Uncertain Are Your Random Forest Predictions?

Authors and Contributors

Sarah Tan @shftan, David Miller @d-miller, Giles Hooker @gileshooker, Lucas Mentch
@LMentch

@ﬂh 28/ 30



Relevant Work

e Mentch, Lucas, and Giles Hooker. (2016). Quantifying uncertainty in
random forests via confidence intervals and hypothesis tests. Journal of
Machine Learning Research, 17(26), 1-41.

e Mentch, Lucas, and Giles Hooker. "Formal hypothesis tests for additive
structure in random forests." Journal of Computational and Graphical Statistics

(2017): 1-9.

e Mentch, Lucas and Giles Hooker. “Hold-out Forests for Consistent Feature
Importance in Random Forests.” In Progress.

e Coleman, Tim, Lucas Mentch, Dan Fink, Giles Hooker, et al. “Statistical
Inference on Tree Swallow Migration with Random Forests” In Progress.

o 29/



Contact Info

Lucas Mentch

Assistant Professor
Department of Statistics
University of Pittsburgh

lkm31@pitt.edu

lucasmentch@gmail.com
lucasmentch.com

@ﬂﬁ 30/ 30



	Background & Motivation
	Random Forests
	Distributional Results and CIs
	Hypothesis Testing
	Feature Importance
	Applications

