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BACKGROUND & MOTIVATION



General Supervised Learning Set-up

Notation:
• Response Y
• Features (covariates) X � {X1 , ...,Xp}
• Prediction point (feature vector) x∗

• Prediction ŷ∗ � F̂(x∗) ∈ R

• We assume we have an i.i.d. training set

Tn � {(X1 ,Y1), ..., (Xn ,Yn)}
used to construct the prediction function F̂, where

Yi � F(Xi) + εi , εi
iid
∼ mean 0
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Machine Learning Pros & Cons

• Given this generic situation with “a lot" of data, but limited
a priori intuition with respect to underlying relationships in
the data, ML tools present an attractive path forward:

� Little to no model speci�cation often required
� Properly tuned models can produce very accurate

predictions

But ...

� Computing F̂ may be computationally expensive
� Limited ability to do inference; loss of intuition

(“Black-boxes")
� Few if any theoretical gaurantees
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Machine Learning Pros & Cons

• So what gets done in practice?
� Reliance on (scarcely available) ad hoc tools
� “Forced" (improper) application of classic statistical tests

(“We will get a p-value one way or the other")
� Use ML for predictions, simpler (usually linear) statistical

models for inference

And thus, what we’d like is ...

� Computationally e�cient set of inferential tools for better
understanding underlying relationships in the data within
traditional “black-box" contexts that come with some
statistical and mathematical backing
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RANDOM FORESTS



Individual Trees

• Trees built by sequentially partitioning the feature space
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• Splits chosen greedily to most improve predictions
�⇒ High variance

• Tendency to over-�t; de�ne cost-complexity parameter
• Very di�cult to analyze.
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Tree-Based Ensembles

• Ensembles of trees usually stabilize variance and improve
predictions

� Bagging (bootstrap aggregating) - take B bootstrap samples
of training set, build a tree with each new sample, and
average over predictions from each tree to get �nal
prediction

Ŷ∗B �
1
B

B∑
i�1

Tx∗ ((X i1 ,Yi1 ), ..., (X in ,Yin ))

� Random Forests - similar to bagging, but at each potential
split point in each tree, select the best variable to split based
on a random selection of only d < p features.

Ŷ∗RF �
1
B

B∑
i�1

Tx∗ ,ωi ((X i1 ,Yi1 ), ..., (X in ,Yin ))
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Random Forests

Why random forests?
• They work! Top ranked method across 100’s of classi�ers

(Fernández-Delgado et al. 2014) and amongst the best
“o�-the-shelf"
• Nice macroscopic structure

Why are they so di�cult to analyze?

1. Greediness in �tting makes obtaining distributional results
for individual trees extremely di�cult

� Adding deterministic structure gets us back to traditional
statistics

2. Bootstrapping compounds the correlation issues
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DISTRIBUTIONAL RESULTS AND CIS



Subsampling

Idea: Construct trees with mn subsamples of size kn instead of
full bootstrap samples and structure ensemble instead of base
learners

F̂(x∗) � 1
mn

mn∑
i�1

Tx∗((X ,Y)i1 , ..., (X ,Y)ikn
)

• Looks a lot like a U-statistic, but need to extend results to
(possibly randomized) kernels with growing rank
• Trade-o�: Want subsamples to be big enough so that trees

can grow large enough to capture su�cient signal, but
small enough that dependence is manageable
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CLT for Subbagged Ensembles

Theorem 1

Let Z1 , Z2 , ...
iid
∼ FZ and let Un ,kn ,mn be an incomplete, in�nite order

U-statistic with (Lipschitz) kernel hkn . Let θkn � Ehkn (Z1 , ..., Zkn )
such that Eh2

kn
(Z1 , ..., Zkn ) ≤ C < ∞ for all n and some constant C,

and let lim n
mn

� α. Then as long as lim kn
√

n
� 0 and lim ζ1,kn , 0,

(i) if α � 0, then
√

n(Un ,kn ,mn−θkn )√
k2nζ1,kn

d
→N(0, 1).

(ii) if 0 < α < ∞, then
√

mn (Un ,kn ,mn−θkn )√
k2n
α ζ1,kn +ζkn ,kn

d
→N(0, 1).

(iii) if α � ∞, then
√

mn (Un ,kn ,mn−θkn )√
ζkn ,kn

d
→N(0, 1).
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Conditions

Condition 1: Let Z1 , Z2 , ...
iid
∼ FZ with θkn � Ehkn (Z1 , ..., Zkn ) and

de�ne h1,kn (z) � Ehkn (z , Z2 , ..., Zkn ) − θkn . Then for all δ > 0,

lim
n→∞

1
ζ1,kn

∫
|h1,kn (Z1)|≥δ

√
nζ1,kn

h2
1,kn

(Z1)dP � 0.

Proposition 1: For a bounded regression function F, if there exists a
constant c such that for all kn ≥ 1,
�
h((X1 ,Y1), ..., (X kn+1 ,Ykn+1)) − h((X1 ,Y1), ..., (X kn ,Ykn ), (X kn+1 ,Y

∗

kn+1))
�

≤ c
�
Ykn+1 − Y∗kn+1

�

where Ykn+1 � F(X kn+1) + εkn+1, Y∗kn+1
� F(X kn+1) + ε∗kn+1

, and where
εkn+1 and ε∗kn+1

are i.i.d. with exponential tails, then Condition 1 is
satis�ed.
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CLT for Random Forests

Theorem 2

Let Uω;n ,kn ,mn be a random kernel U-statistic such that U∗
ω;n ,kn ,mn

sat-
is�es Condition 1 and suppose that Eh2

kn
(Z1 , ..., Zkn ) < ∞ for all n,

lim kn
√

n
� 0, and lim n

mn
� α. Then, letting β index the subsamples, so

long as lim ζ1,kn , 0 and

lim
n→∞

E
(
h(ω)

kn
(Zβ1 , ..., Zβkn

) − Eωh(ω)
kn

(Zβ1 , ..., Zβkn
))2 , ∞,

Uω;n ,kn ,mn is asymptotically normal and the limiting distributions are
the same as those provided in Theorem 1.

•We’ve got the distributions; once we estimate the parameters, we
can pull out con�dence (prediction) intervals. On to more exciting
kinds of inference!
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HYPOTHESIS TESTING



Testing Feature Significance

• Partition collection of features {X1 , ...,Xp} into two sets:

XR :� Reduced set of features known to be important
XA :� Additional features to test for importance

in order to test

H0 : F(XR ,XA) � FR(XR) at N total test points

• Let F̂ denote the original ensemble, and F̂R denote the ensemble that
ignores XA, so that we have

D̂(x∗i ) � F̂(x∗i ) − F̂R(x∗i )
�

1
mn

∑
j

Tx∗i
(S j) − 1

mn

∑
j

Tx∗i ,R
(S j)

�
1

mn

∑
j

(
Tx∗i

(S j) − Tx∗i ,R
(S j)

)
• This is a U-statistic, so D̂T

Σ̂−1D D̂ ∼ χ2N can be used as a test statistic. 13/ 30



Testing for Additivity

• We can also test for various forms of additivity

Total Additivity: H0 : F(X1 ,X2) � F1(X1) + F2(X2)
Partial Additivity: H0 : F(X1 ,X2 ,X3) � F1(X1 ,X3) + F2(X2 ,X3)
• De�ne the test set as a grid of test points, viewed as factor levels

in a traditional ANOVA set-up, and derive the test-statistics
accordingly
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FEATURE IMPORTANCE



Feature Importance

• Software to compute random random predictions typically also
includes a procedure to produce variable importance scores

� Another reason for their sustained popularity

• Most commonly, Breiman’s original out-of-bag (OoB)
importance measure is used:

VIX1 �
1
n

n∑
i�1

�
Fx∗(X1 , ...,Xp) − Fx∗(Xπ

1 ,X2 , ...,Xp)�2

• Many known problems, especially with overstating importance
of correlated features (Strobl et al. 2007, 2008; Nicodemus et al.
(2010); Biau and Scornet (2015) for overview)
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OoB Importance with Correlation
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Figure: Average OoB importance of X9 and X10 in additive linear model

yi �
∑10

i�1 βi xi + εi with β1 � · · · � β8 � 1, β9 � β10 � 1, 0.8, and 0.5, resp. 16/ 30



OoB Importance with Correlation

• Preference for correlated features particularly problematic
given the backward-elimination-type procedures
commonly employed in practice

� Might instead prefer something akin to t and F-tests in
linear models: correlated features show weaker marginal
importance but signi�cant joint importance

• Proposal: Instead of building, followed by permuting and
predicting, permute (or hold-out) and rebuild to measure
impact on model

� Akin to extending random feature eligibility to entire trees
instead of individual splits
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Hold-out Forests

• Structured Hold-out (SHO): Given ensemble of size m, build
≈

m
d+1 trees excluding (or permuting) each feature and one set

with all features

• Random Hold-out (RHO): For each tree in the ensemble, include
feature Xi with probability pi .

• Can de�ne di�erent importance measures:

VIpred(Xi) � 1
nT

∑nT
j�1

(
RF−i(xT j ) − RF(xT j )

)2
VIMSE(Xi) � 1

nT

∑nT
j�1

(
SE−i(xT j ) − SE(xT j )

)2
where SE−i(xT j ) �

(
RF−i(xT j ) − yT j

)2
� Fits within previous framework and allows for importance

intervals instead of only point estimates
� Also eliminates the “importance stability issue” –

commonly misunderstood 18/ 30



Bike Sharing Dataset Example
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Figure: VI rankings by OoB (above) and SHO (below).
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APPLICATIONS



Application: The eBird Project

Citizen science initiative at Cornell’s Laboratory of Ornithology

• Birdwatchers (birders) record observations (time, place,
e�ort, species seen)

• GPS/Time allows addition of Geographic Information
Systems (GIS) and weather covariates.

• Currently n > 100 million records and p > 1000.
• Goals:

� Data-driven maps of bird habitat range/migration
� Hypothesis generation about bird ecology
� Evidence of changing ecological factors/behavior
� Forecasts of bird migration
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Indigo Bunting Migration
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Indigo Bunting Migration

21/ 30



Indigo Bunting Migration
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Indigo Bunting Presence/Absence 2010
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Figure: Monthly counts of Indigo Bunting observations in 2010.
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Ebird-Related Testing

• Testing the importance of month during the year 2010.
(Time of Year should be important for migratory species)

� Month shows up as highly signi�cant, but random values
of month can also appear (more slightly) signi�cant

� Permuting additional variables appears more robust than
simple deletion (test statistic values cut in half)

• More recently: looking at e�ects of Tree Swallow early
departure during fall migration along east coast of U.S.

� Anecdotal evidence that Tree Swallows “left early" in
certain years (2008, 2009), though no evidence for why is
immediately obvious
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Tree Swallow Early Departure
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Tree Swallow Early Departure
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Results

• To test for an e�ect of year (i.e. were the migration patters
in 2008 & 2009 really substantially di�erent from what we
would typically expect), we develop a permutation-style
test treating the partial e�ect curves as functional data

� Substantial di�erences seen when leaving-in/holding-out
max_temp vs day_of_year, though dropping/permuting
max_temp not as big an e�ect as we might want to see

• To de-correlate max_temp and day_of_year, we test
max_temp_anomaly at the test points from previous slide
and see signi�cance in 5 out of 6 areas
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Food for Thought & Future Work

• Testing procedures work well, but can be sensitive to
subsample size & accuracy of the estimated covariance
parameters

� Still requires constructing many, many trees
� Potential alternative methods for estimating those

parameters (close relationship to ideas in post-selection
inference)

• Currently investigating alternative testing procedures that
avoid additional tree construction

• Still appears to be a big gap between theory and practice
(e.g. distributions look approximately normal for large
subsample sizes; Variance conditions su�cient, but almost
certainly not necessary)
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SuRFIn R Package
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